
Supplementary Materials:

Corruption Drives the Emergence of Civil Society

1 Calculation of Stationary Distribution

Our model of cooperation follows the common formulation of evolutionary dynamics simulations [1].
Specifically we consider a set of M agents each subscribing to one of d strategies. At each time step a
random sample of N agents are chosen to play a public goods game. The payoffs received by each agent
are determined by the number of each type of strategy. At each time step 2 agents are randomly chosen
and their payoffs are compared. The probability of one agent imitating the other is determined by a
logistic function of the difference in payoffs and an imitation strength s. There is also a small probability
µ that a randomly chosen agent will undergo a mutation to a different strategy.

In order to calculate the stationary distribution of strategies in our evolutionary dynamics we consider,
in common with previous work on life-death processes [2], the rates of transitions between homogeneous
states in which all agents subscribe to a single strategy. Under deterministic dynamics these homogeneous
states may be absorbing i.e. Once cooperation has collapsed and defectors have taken over, the system
cannot return to a homogeneous state of cooperators. However random mutation allows mixing between
homogeneous states via mutation and subsequent fixation.

Consider a population of agents each subscribing to strategy X. The probability that the system
makes the transition to the state of all agents subscribing to a different strategy Y depends on the
product of two quantities;

1. The probability that a random mutation introduces an agent with strategy Y (µX,Y )

2. The probability that this single mutant can invade the population and lead all agents to switch to
strategy Y ; this is known as the fixation probability (ρX,Y ).

In this formulation we assume that the mutation rate is low so that each mutation event leads either
to fixation of a new homogeneous state or reversion to the same homogeneous state before the next
mutation event occurs. Therefore, at any given time, at most two strategies are present.

Addressing (1), mutations occur in the population at a rate µ. The resultant strategy is chosen from
the d− 1 other strategies at random, giving a mutation probability

µX,Y =
µ

(d− 1)
(1)

Addressing (2), the fixation probability can be expressed explicitly from the product of the probability
of each agent, after the first mutant agent, successively imitating the invading strategy. This requires
a detailed description of the payoffs and imitation probabilities (section 1.2). Alternatively, (2) can be
inferred simply in the limit of strong imitation (section 1.1).

Once we have an expression for the transition matrix between the homogeneous states, we can find
the stationary distribution of the system of agents as the dominant eigenvector. This is a vector of values
of size d which represents the long run probabilities of finding the system in a given state. We require
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that the transition matrix T be row normalised i.e. If the system is found in state X it must either
remain in state X or transition to state k 6= X. Because the stationary distribution tells us the relative
proportions of each state and the fact that the mutation probability does not depend on the source or
target states, the actual numerical value of µ is not important and it is convenient to omit it from T .

For a simple system of d = 3 states X,Y and Z representing cooperators, defectors and non-
participants respectively, we can construct T

T =


1− 1

2ρX,Y −
1
2ρX,Z

1
2ρX,Y

1
2ρX,Z

1
2ρY,X 1− 1

2ρY,X −
1
2ρY,Z

1
2ρY,Z

1
2ρZ,X

1
2ρZ,Y 1− 1

2ρZ,X −
1
2ρZ,Y

 (2)

The factor of 1
2 corresponds to 1

d−1 .

1.1 Strong Imitation Limit

The individual entries of T can be populated by simple arguments under the limit s → ∞ (and under
suitable conditions for other parameters such as punishment strength or cost) so that a strategy with a
superior payoff will always be imitated and an inferior payoff will not. There are in fact only 3 possible
values for the fixation probabilities ρi,j

ρi,j = 0: If Pj < Pi for a single mutant with strategy j, then the mutation cannot invade and the fixation
probability is 0.

ρi,j = 1: If Pj > Pi for a single mutant with strategy j, then the mutation is beneficial and induces transition
to a homegenous state j

ρi,j = 1
2

: This is peculiar to a single cooperator attempting to invade non-participants. The non-participants
receive a fixed payoff of σ but a single cooperator will also receive a payoff σ since she has no partner
with which to participate in a PGG. At the next imitation event involving the mutant cooperator,
the cooperator will have the opportunity to imitate a non-participant. Since the payoffs are identical,
the cooperator will revert to a non-participant with probability 1

2 , but is equally likely to convert
a non-participant to cooperation under a neutral drift. Once two or more cooperators are present,
this strategy is dominant and they invade with probability 1.

Our intuitive understanding of PGGs tells us that in the absence of punishment, free-riding always
pays (ρX,Y = 1) and that unilateral cooperation in the face of defection does not (ρY,X = 0). When
cooperation is underway, it pays to participate (ρX,Z = 0) and due to the argument above, cooperators
are slow to take over non-participants (ρZ,X = 1

2 ). Finally, if no-one is playing the PGG then something
is better than nothing (ρY,Z = 1 and ρZ,Y = 0). Therefore T reduces to

T =


1
2

1
2 0

0 1
2

1
2

1
4 0 3

4

 (3)

Leading to a stationary probability
[
1
4 ,

1
4 ,

1
2

]
; the systems spends half of its time in a state of non-

participation and an equal one quarter both as all cooperators or defectors. Intuitively there is a single
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cycle from full cooperation, which may only be invaded by defectors (under the assumption that σ < Ncr
N−1 ).

Defectors in turn may only be invaded by non-participants. Once in a state of full non-participation, the
population may only slowly be invaded by cooperators due to the argument above leading to a fixation
probability of 1

2 . Therefore non-participation predominates over long time averages as seen in simulation.

1.2 Explicit Calculation of Transition Probabilities (Intermediate Imitation
Strength)

The dynamics of the evolution of cooperation amongst a finite-sized population of agents diverges from the
behaviour of mean-field treatments such as replicator dynamics. Now the stochastic effects of mutation
become significant [3]. The fixation probability of an l mutant in an otherwise homogeneous population
of k agents, (2), can be calculated explicitly from the theory of birth-death processes [1] as

ρk,l =
1

1 +
∑M−1
q=1 Πq

Nl=1

τl→k(Nl)

τk→l(Nl)

(4)

Where M is the size of the population and the number of agents with strategy k or l respectively
is given by Nk and Nl with M = Nk + Nl. Here τl→k(Nl) represents the probability that one of the
Nk players will convert to strategy l via imitation. This transition probability for a single agent can be
written explicitly for a Moran process obeying a logistic imitation probability.

τl→k(Nl) =
Nl
M

M −Nl
M

1

1 + exp [−s(Pk − Pl)]
(5)

Where s is the imitation strength and Pk and Pl are the payoffs of strategies k and l which depend
on the number of k and l players. Thankfully the fixation probability simplifies to

ρk,l =
1

1 +
∑M−1
q=1 exp[−s

∑q
Nl=1(Pk − Pl)]

(6)

Although there is no analytical expression for this at intermediate values of s, the sums can be readily
evaluated and the entries of T calculated. In turn the stationary distribution can be calculated.

Henceforth, unless otherwise specified, we use the following parameter values.

PGG contribution c 1.0
PGG multiplier r 3.0
Population size M 100

Sample size N 5
Imitation strength s 1000

Non-participation payoff σ 1.0
Pool punishment effect B 0.7
Pool punishment cost G 0.7
Peer punishment effect β 0.7
Peer punishment cost γ 0.7

Bribe as proportion of tax K 0.5
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2 Replicating Results of Sigmund et al

Sigmund et al [4] calculate the stationary distributions of their simulations in an analagous way. However
the introduction of new punishing strategies introduces a fourth possible value for the fixation probability.
When a peer-punishing mutant arises in a homogeneous population of cooperators, there is neutral drift
since peer-punishers have no-one to punish so enjoy the same benefits as cooperators with no additional
costs. This leads to a fixation probability of 1

M [1]. In this scheme, the possible strategies are:

Cooperators (X): Participate and contribute c to the PGG

Defectors (Y ): Participate but do not contribute to the PGG

Loners (Z): Neither participate nor contribute to PGG

Peer Punishers (W ): Participate and contribute to the PGG (cooperate) and pay a fixed cost per
defector γ to punish defectors if encountered (the more the defectors, the more the cost).

Pool Punishers (V ): Participate and contribute to the PGG (cooperate) and pay a fixed a prior cost
G toward a punishment pool (central authority), which will punish defectors if defectors appear.

The payoff is determined by choosing a sample population of size N to play the public good game.
Below is the payoff calculations for the different strategies. It is important to note here that we assume
here weak altruism (self-returning) not strong altruism (others-only) [5], since it is more common in
models of public goods games.

The second order punishment terms inflicted by pool-punishers and peer-punishers are also worth

noting. Peer-punishers inflict the fine β. (N−1).WM−1 .(1 − Psecond) on cooperators, which is proportional to

the number of defectors (term Psecond). Pool-punishers inflict the fine B × V × N−1
M−1 on cooperators and

peer-punishers regardless of defectors existence. This is consistent with the original work of Sigmund and
et al [4].

Pσ =

(
Z

N−1
)(

M−1
N−1

)
Psecond =

(
M−Y−2
N−2

)(
M−2
N−2

)
Y payoff = (Pσ.σ) + (1− Pσ).r.c.

M − Z − Y − C
M − Z

−B(N − 1)
V +H

M − 1
− β. (N − 1).W +H

M − 1

X payoff = (Pσσ) + (1− Pσ).c.

(
r.
M − Z − Y − C

M − Z
− 1

)
−B(N − 1)

V +H

M − 1

−β. (N − 1).W

M − 1
.(1− Psecond)

Z payoff = σ

W payoff = (Pσσ) + (1− Pσ).c.

(
r.
M − Z − Y − C

M − Z
− 1

)
− (N − 1).

Y + C

M − 1
.γ

− (N − 1)X

M − 1
.γ.(1− Psecond)−B(N − 1)

V +H

M − 1

V payoff = (Pσσ) + (1− Pσ).

(
c.

[
r.
M − Z − Y − C

M − Z
− 1

]
−G

)
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The transition matrix is given by:



X Y Z V W

X TXX TXY TXZ TXV TXW
Y TY X TY Y TY Z TY V TYW
Z TZX TZY TZZ TZV TZW
V TV X TV Y TV Z TV V TVW
W TWX TWY TWZ TWV TWW

 (7)

Where

Tij

{
1
4µρij if i 6= j

1− 1
4µ
∑
k 6=i ρik if i = j

(8)

This reduces to



X Y Z V W

X 3
4 −

1
4M

1
4 0 0 1

4M
Y 0 3

4
1
4 0 0

Z 1
8 0 5

8
1
8

1
8

V 1
4 0 0 1

2
1
4

W 1
4M 0 0 0 1− 1

4M

 (9)

With the stationary distribution 1
3M+23 [6, 6, 4, 1, 3M + 6] i.e. Peer-punishers predominate. See Fig(2).

Figure 1: Stationary distributions of states as a function of imitation strength. The dashed line represents
equal distribution between the d states.

5



Including second order punishment leads to pool punishers dominating. Pool punishers now punish
defectors, cooperators and peer punishers for not contributing to the pool. Peer-punishers continue to
punish defectors and cooperators.

The main differences introduced is that there is no longer a neutral drift between cooperators and
peer punishers (ρX,W → 0), cooperators no longer invade pool-punishers (ρV,X → 0) or peer-punishers
(ρV,W → 0).

The transition matrix becomes



X Y Z V W

X 3
4

1
4 0 0 0

Y 0 3
4

1
4 0 0

Z 1
8 0 5

8
1
8

1
8

V 0 0 0 1 0
W 1

4M 0 0 0 1− 1
4M

 (10)

Since there is no flow out of a state of full pool-punishers, but flow into it; the stationary distribution
becomes [0, 0, 0, 1, 0]. (See Fig(2)). Thus the presence of second-order punishment of second-order free-
riders (cooperators and peer-punishers) determines whether pool-punishers or peer-punishers will prevail.
The latter outcome is preferable since pool-punishers have clear dominance, whereas without second order
punishment cooperation is susceptible to breaking down (See [4] Fig 3a, main paper)

Figure 2: Stationary distributions of states as a function of imitation strength. The dashed line represents
equal distribution between the d states.
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3 Corruptors

We now introduce a fifth strategy into the model of Sigmund et al :

Corruptors (C): A corruptor pays the central authority a fixed fee KG < G + c to avoid punishment
for defecting from the PGG. Parameter K ∈ [0, 1] here is a new parameter that controls bribe as
percentage of G, the fee paid by pool punishers (well-behaving citizens).

The payoff of corruptors is:

C payoff = (Pσσ) + (1− Pσ).

(
c.r.

M − Z − Y − C
M − Z

−KG
)
− β.(N − 1)

W +H

M − 1

This leads to the larger transition matrix:



X Y Z V W C

X TXX TXY TXZ TXV TXW TXC
Y TY X TY Y TY Z TY V TYW TY C
Z TZX TZY TZZ TZV TZW TZC
V TV X TV Y TV Z TV V TVW TV C
W TWX TWY TWZ TWV TWW TWC

C TCX TCY TCZ TCV TCW TCC

 (11)

3.1 Weak Pool Punishment (Low B)

When second-order punishment is weak (low values of B), peer punishers are stable with respect to
pool-punishers. Substitution for the fixation probabilities leads to



X Y Z V W C

X 3
5

1
5 0 0 0 1

5
Y 0 4

5
1
5 0 0 0

Z 1
10 0 7

10
1
10

1
10 0

V 0 0 0 4
5 0 1

5
W 1

5M 0 0 0 1− 1
5M

C 0 1
5

1
5 0 0 3

5

 (12)

The stationary distribution is now 1
M+7 [1, 2, 2, 1,M, 1] (using a population size M = 100 this is

approximately [0.01, 0.02, 0.02, 0.01, 0.93, 0.01]) confirming clear dominance of peer-punishers.

3.2 Strong Pool Punishment (High B)

However, under extremely high second-order punishment cooperation breaks down with pool punishers
dominating followed by loners and corrupt. Modifying (12) yields



X Y Z V W C

X 2
5 −

1
5M

1
5 0 1

5
1

5M
1
5

Y 0 3
5

1
5

1
5 0 0

Z 1
10 0 7

10
1
10

1
10 0

V 0 0 0 4
5 0 1

5
W 1

5M 0 0 1
5

4
5 −

1
5M 0

C 0 1
5

1
5 0 0 3

5

 (13)
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This leads to a stationary distribution of

1
77
16 + 33(2+3M)

16(22+17M)

[
3

8
− 9(2 + 3M)

8(22 + 17M)
,

11

16
− 9(2 + 3M)

16(22 + 17M)
,

9

8
− 3(2 + 3M)

8(22 + 17M)
,

13

8
+

9(2 + 3M)

8(22 + 17M)
,

3(2 + 3M)

(22 + 17M)
, 1

]
(14)

This can be evaulated with M = 100 as [0.034, 0.114, 0.204, 0.352, 0.102, 0.193] i.e. pool-punishers
predominate, followed by loners and corruptors.

Figure 3: Stationary distributions of states as a function of pool punishment strength. As B increases
cooperation breaks down.

We see 2 very clear discontinuities at B ≈ 17 and B ≈ 40 when the proportion of peer punishers
drops to be replaced by pool-punishers. Above the first threshold, pool-punishing agents will invade peer-
punishers (ρWV → 1). Above the second threshold, pool-punishing agents will also take over defectors.
These points are explained below.

Firstly, at intermediate values of B the expected pool-punishment (calculated from the probability of
being selected with the single pool-punisher in the sample of N) is low. Therefore, the low probability of
being matched with a pool-punisher doesn’t incentivise the payment of G. However, once B is sufficiently
high, the threat of pool-punishment even from a single pool-punishing hybrid player is too high of a risk
and all non-pool-punishing strategies can be invaded by pool-punishing strategies (ρWH , ρWV → 1). The
condition for this is given by the expected cost of receiving pool-punishment when a single pool-punishing
hybrid agent is present in a population

(
N − 1

M − 1
)B (15)
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When this is equal to G it is cheaper to pay tax than to risk pool-punishment

G <
(N − 1)

M − 1
B (16)

B∗ = (
M − 1

N − 1
)G (17)

Substituting N = 5,M = 100 and G = 0.7 gives a critical value when B∗ = 17.325.

Adressing the second threshold; as the pool-punishment term becomes very large, the expected value
of pool-punishment for a homogeneous population of defectors being punished by a single pool-punisher
becomes so large that pool-punishers may invade defectors, despite the pool-punisher making a heavy
loss in the PGG.

c+G <
N − 1

M − 1
B (18)

B∗ =
M − 1

N − 1
(c+G) (19)

Substituting for M,N, c and G gives B∗ = 42.075.
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4 Corruptors and Hybrid Punishers

Finally, we add Hybrid-Punishers (H) to the set of possible strategies.

Hybrid-Punishers (H): These players participate and contribute to the PGG (cooperate), pay a fixed
cost per defector γ, and pay a fixed a prior cost G toward a punishment pool.

The payoff of hybrid punishers is then defined by the following equation:

H payoff = (Pσσ) + (1− Pσ).

(
c.

[
r.
M − Z − Y − C

M − Z
− 1

]
−G

)
− (N − 1).

Y + C

M − 1
.γ

We now have the following transition matrix.



X Y Z V W C H

X TXX TXY TXZ TXV TXW TXC TXH
Y TY X TY Y TY Z TY V TYW TY C TY H
Z TZX TZY TZZ TZV TZW TZC TZH
V TV X TV Y TV Z TV V TVW TV C TV H
W TWX TWY TWZ TWV TWW TWC TWH

C TCX TCY TCZ TCV TCW TCC TCH
H THX THY THZ THV THW THC THH


(20)

4.1 Weak Pool Punishment (Low B)

Assuming a low value of B, results in the transition matrix below.



X Y Z V W C H

X 3
6 −

1
6M

1
6 0 1

6
1

6M
1
6 0

Y 0 4
6

1
6

1
6 0 0 0

Z 1
12 0 9

12
1
12

1
12 0 0

V 0 0 0 5
6 −

1
6M 0 1

6
1

6M
W 1

6M 0 0 0 1− 1
6M 0 0

C 0 1
6

1
6 0 0 2

3 0
H 1

6
1
6

1
6

1
6M

1
6

1
6

1
6 −

1
6M


(21)

The stationary distribution in this case is given as

1

Γ

[
24

13
+

15M

13
,

31

15
+

55M

26
,

46

13
+

45M

13
, 1 + 5M, 3(16 + 34M + 15M2, 5(5 + 8M)), 1

]
(22)

Where the normalisation factor is given as

Γ =
127

13
+

305M

26
+

5

13
(5 + 8M) +

3

26
(16 + 34M + 15M2) (23)

This evaluates to [0.01, 0.017, 0.016, 0.008, 0.94, 0.006, 0.001]. Peer punishers overwhelmingly predom-
inate, followed by defectors, loners and cooperators (agrees with low B limit of Fig 4 of corruption paper).
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4.2 Strong Pool Punishment (High B)

When B is very large the transition matrix becomes



X Y Z V W C H

X 2
6 −

1
6M

1
6 0 1

6
1

6M
1
6

1
6

Y 0 4
6

1
6

1
6 0 0 0

Z 1
12 0 2

3
1
12

1
12 0 1

12
V 0 0 0 5

6 −
1

6M 0 1
6

1
6M

W 1
6M 0 0 0 5

6 −
1

6M 0 1
6

C 0 1
6

1
6 0 0 2

3 0
H 0 0 0 1

6M 0 0 1− 1
6M


(24)

The stationary distribution can be expressed as

1

Γ

[
3(2 +M)

(70 + 86M + 27M2)
,

−22− 17M

(70 + 86M + 27M2)
,

6(5 + 4M)

(70 + 86M + 27M2)
,

−70− 59M

(70 + 86M + 27M2)
,

6(1 + 2M)

(70 + 86M + 27M2)
,

−38− 31M

(70 + 86M + 27M2)
, 1

]
(25)

Where the normalisation factor is given as

Γ =
1

1− −70−59M
70+86M+27M2 − −38−31M

70+86M+27M2 − −22−17M
70+86M+27M2 − 3(2+M)

70+86M+27M2 − 6(1+2M)
70+86M+27M2

− 6(5+4M)
70+86M+27M2

(26)

With the stationary distribution as follows [0.001, 0.0059, 0.008, 0.020, 0.004, 0.011, 0.950]; hybrid pun-
ishers predominate (in agreement with the high B limit of Fig 4 of corruption paper). The proportions
are plotted as a function of B below in Fig (4.2).

We see 2 very clear discontinuities at B ≈ 0.2 and B ≈ 17 when the proportion of peer punishers
drops to be replaced by hybrid strategies. Above the first threshold; hybrid strategies may no longer
be invaded by peer-punishers (ρHW → 0). Above the second threshold, hybrid agents will also invade
peer-punishers (ρWH → 1). The explanation for the second threshold is the same as section 3 and the
first threshold is explained below.

For a single peer-punishing mutant to invade hybrid players, the saving from paying the tax G must
outweigh any possible second order pool-punishment. Since, apart from the mutant herself, only pool-
punishers are present this has an expected value of B(N − 1) i.e. punishment from all the other players
in the sample.

G < B(N − 1) (27)

Leading to a threshold value for B∗ = 0.175.

The transition matrix in (24) also shows that when second-order punishment is strong, hybrid punish-
ers are only destablized by neutral drift towards pool-punishers, who can then be exploited by corruptors.
One interpretation is that this form of instability represents a risk that exists in the real world. When
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Figure 4: Stationary distributions of states as a function of pool punishment strength. As B increases
hybrid punishers become dominant.

there is high cooperation, individuals might become lax in their propensity to altruistically punish de-
fection, and this can destablize cooperation. As mentioned in the main text, this risk may motivate
goverments to sometimes mandate that citizens to sign up for certain peer punishment duties, like jury
duty, and punish those who merely pay their taxes. If pool-punishers were also punished by second-order
punishment, then there would be no neutral drift towards this strategy, and the stationary distribution
would be [0, 0, 0, 0, 0, 0, 1], as there would be no flows away from the hybrid punisher state.

It is worth noting that dominance of the hybrid strategy is robust against change in different premeters
for high values of B (effect of pool punishement). Figure 4.2 shows that unless the cost of peer punishment
(γ) is too steep, the hybrid strategy dominates. Simlarly, Figure 4.2 shows that the hybrid strategy
dominates the population unless the severity of peer punishment (β) is too small. In both cases, when
the hybrid strategy can not dominate, corruption, defection, and non-participation increase significantly.
Finally, with respect to the cost of corruption (K), hybrid strategy dominates unless the cost of corruption
is too high.
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Figure 6: Stationary distributions of states as a function of β with the following settings: M = 100, N =
5, r = 3, c = 1, σ = 1, G = 0.7, B = 1000, γ = 0.7, and K = 0.5.
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Figure 7: Stationary distributions of states as a function of K with the following settings: M = 100, N =
5, r = 3, c = 1, σ = 1, G = 0.7, B = 1000, γ = 0.7, and β = 0.7.
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